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A four parameter model for oral drug absorption 
L. SAUNDERS* AND T. NATUNEN 

Physical Chemistry Laboratories, The School of Pharmacy, University of London, Brunswick Square, 
London WCIN IAX,  U.K. 

A method has been developed for assessing absorption parameters from plasma concentra- 
tion-time results taken over a relatively short time period. In this method, the disposition 
function is simplified so as to reduce the number of parameters to be evaluated from the 
five of the two compartment disposition equation to four, and to avoid the requirement for 
the evaluation of a slow disposition rate constant. The measurements need not therefore be 
continued over a period long after absorption is complete. A suitable design for kinetic 
experiments using this method for interpreting the results, is described. A random noise 
statistical method is proposed for assessing the stability of the calculated parameters. 

Absorption with two compartment disposition 
The mathematical model for first order drug 
absorption with two compartment disposition leads 
to a plasma concentration (C), time (T) equation 
with five parameters, 

C = A.exp( --cr.T) + B.exp( -p.T) 
-(A + B).exp(-ka.T) . . . . (1) 

There are too many parameters for reliable evalua- 
tion from experimental data by non-linear least 
squares. An alternative method based on the maxi- 
mum point of the C,T curve has been proposed 
(Saunders & Natunen, 1973). However, this method 
requires determinations of plasma concentrations 
over a considerable period in order to define the 
slow disposition constant, /?. 

All the information related to absorption is con- 
tained in the first part of the C,T curve; at times 
later than twice the time, Tm, at which maximum C 
occurs, the absorption is generally more than 95% 
complete and it should therefore be possible to 
extract the absorption information from values of C 
determined over a limited period of time of the order 
of 2.Tm. Westlake (1973) has discussed the desir- 
ability of defining limited objectives in pharmaco- 
kinetic studies and of concentrating experimental 
determinations in the time region where the para- 
meters which are particularly required, have their 
main effect. 

The use of limited time experiments is supported 
by the study made by Lovering, McGilveray & 
others (1975) in which they showed that relative bio- 
availabilities for a number of drugs assessed from 
areas under plasma concentration/time curves, 
could have been estimated with blood sampling over 
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a 24 h period or less. The ratios of areas with a test 
and a standard formulation changed little between 
the end of the drug absorption period and the much 
later times at which blood sampling was terminated. 

Many pharmacokinetic studies are concerned with 
the effects of formulation on drug absorption; it is 
then the parameters relating to absorption such as 
lag time and first order absorption rate constant 
which are of main interest. The object of the work 
described in this paper has been to develop a method 
for interpreting C,T results generated with equation 
(1) so that over a limited time period they may be 
interpreted by a simpler expression which preserves 
the absorption information. 

An appropriate expression has been evolved and 
has been tested with a wide variety of generated C,T 
data. In some cases random noise to simulate 
experimental error in C has been added to check the 
stability of the calculations. Finally, it has been used 
with experimental C,T data. 

A complete Fortran Programme to carry out all 
the necessary calculations has been written for the 
CDC computers of London University. 

Development of a four parameter model 
From equation (l), C may be considered to be the 
resultant of two functions, A.exp(-a.T) + B.exp 
(-p.T) related primarily to disposition and (A + B). 
exp( -ka.T), a function related primarily to absorp- 
tion; the values of the terms A and B are governed 
by both sets of rate constants; in Fig. 1 the two 
functions with the resultant C,T curve are shown 
for one set of data. It should be possible to express 
the first function with fewer than four parameters 
without unduly distorting the absorption function. 

The simplest modification is to express the dis- 
position as a single term A,.exp(-kd.T) where kd 
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kd)) where Xo is the dose absorbed and V is the 
apparent volume of distribution. As kd approaches 
ka A becomes large and at the same time the differ- 
fence of exponential terms in equation (2) approaches 
the value (ka - kd).exp( -ka.t), consequently the 
equation moves towards 010 and becomes unstable. 

Many possible fourth parameters have been 
examined (Saunders, 1974) and we have found that 
the most effective one leads to the equation 

C = A,. (H + (l--H).eXp(-kd.T) 
- exp(-ka.T)) (3) 

This equation maintains the condition C = 0 at 
T = 0 and the introduction of H, a positive con- 
stant, permits improved assessments of ka from data 
generated with equation (1) up to T = 2.T,. 

Equation (3) cannot be taken to represent results 
generated by equation (1) over a long time period. 
At long times equation (3) approaches a limiting 
value of A2.H and so does not give a decay of C at 
late times. 

An analysis which is effective with theoretical data 
may break down when used with results subject to 
random experimental error. The calculation was 
therefore, tested with generated C,T values to 
which random noise simulating experimental error 
was applied to C. 

FIG. 1. Disposition and absorption functions for 
generated data Al,ka = 08,  up to 7 h. The top curve 
is A.exp(-a.T) + B.exp(-P.T); the bottom curve is 
-(A + B).exp(-ka.T); the mid-curve is the resultant 
curve for C. 

is an  overall disposition constant (Saunders, 1975). 
The total equation is then, 

C = A,.(exp( -kd.T) - exp( -ka.T)) . . * * (2) 
In fact this equation, applied over a limited time 
period up to 2.Tm, gives good values of ka with data 
generated by equation (l), for cases where ka/kd is 
large, as is seen in Table 1. When ka and kd are 
closer together distortion of the ka values occurs and 
since much experimental data is in this region, a 
further parameter is needed in the disposition 
function to relieve the distortion. 

When equation (2) is deduced from the rate 
equation, thevalueofAis found to be X,.k,/(V.(ka - 

Table 1. Generated data. AZ. Input parameters k, = 0.1, k2 = 0.1, ke = 0.05, I = 100, c( = 0.228, = 
0.0219. Ks, = input absorption rate constant; Cm = maximum value of C; Tm = time at which the maximum 
occurs; CAL is type of calculation, 3 4  is three ordinate. is four ordinate; ka = estimated absorption rate 
constant; kd, A, and H are the parameters of equation (4); L is the estimated availability; D is the sum of 
squared differences between input values of C and calculated values. 

Ka 
0.4 

Cm T m  

288 4.30 

CAL 

34 
44 
LSQ 
34 
44 
LSQ 
34 
44 
LSQ 
34 
4d 

ka 
0.484 
0.454 
0.418 
0.858 
0.828 
0804 
1.25 
1.22 
1.20 
1 *64 
1.62 
1.60 
2.03 
2-01 
2.00 
2.43 
2.41 
2.40 

k d  AP H L D 
4.10-' 
9.10-6 
3.10-O 
3.10-' 
5.10-5 
5.10-' 
2.104 
3-10-' 
2.104 

3 ~ 1 0 - ~  

2.10-5 
7*10-* 

2.10-5 
4.1 0-8 

2.10-6 
2.10-6 

1-10-4 

1.10-7 
2.10-4 

1.10-4 

1.10-4 

0.086 
0.137 

5.08 
5.93 
7.50 

0166 
0.173 4.21 

4.61 

4.73 

4.80 

4.83 

4.86 

4.88 

0.1 83 
0.112 
0170 
0.203 
0.123 
0.178 
0.208 
0.129 
0.181 
0.210 

3.46 2-7 1 0.8 

1 *2 

5.40 
5.81 0.189 

0.226 6.18 
5.37 
5.57 
5.73 

2.75 2.05 
0.200 
0-251 

3.94 1.68 1.6 

2.0 

5-31 
5.44 
5.53 

0.205 
0.263 LSQ 

34 4.07 1.43 
. 

0.132 
0.183 
0.21 1 
0.135 

. ~~ 

5.27 
5.35 
5.41 
5.24 

0.207 
0271 

44 
LSQ 
34 
46 

4.17 1.26 2 4  

2.8 

0.209 
0.276 

0.184 
0.212 
0.137 
0.185 
0.213 

5.30 
5.34 LSQ 

34 
44 
LSQ 

425 1.13 
- .- 

2.83 
2-81 
2.80 

- - .  

5.21 
5.25 
5.29 

0.210 
0.280 
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Method of calculation 
The lag time before appreciable amounts of drug 
appear in the plasma was assessed by fitting a 
second degree polynomial to the first three points 
and extrapolating to C = 0 as already described 
(Saunders & Natunen, 1973). 

The intercept, TI if positive was subtracted from 
all the experimental time values. The lag time itself 
is an interesting absorption parameter, related to the 
formulation of the drug. 

The maximum point Tm,Cm was assessed by 
fitting a second degree regression to the points 
around the highest value of C in the data. Use of a 
regression and five points with C and log T as the 
variables gave a better method for flat maxima with 
data subject to random error, than the three point 
curve fitting procedure previously described 
(Saunders & Natunen, 1973). The use of log T 
allows for the asymmetry of the region around the 
maximum point. 

Three ordinate calculation 
In the first place the three parameter model of 
equation (2) was used, the fourth parameter H was 
then introduced in a subsequent calculation. 

To avoid the necessity for providing starting 
values for the parameters ka,kd and A of equation 
(2), the equation was fitted to three ordinates C,, 

already been estimated and the values of the other 
two ordinates were assessed by interpolation with a 
second degree regression applied to the four nearest 
points when sufficient points were available or by a 
second degree curvilinear interpolation when the 
number of points was insufficient for the regression. 
The following scheme was then used. 

Cm, C,, at T = Tm/2, T = Tm, T = 3Tm/2. Cm had 

Ra = exp( -ka.Tm/2) 
c1 = A.(Rd-Ra) 
G = A.(Rd3-RaS) 
then Q1= Ra + Rd Qz = Raa + + Rd' 
and Ra' - Q1.Ra + Q1' - QB = 0 . . . . (4) 
the roots of this quadratic equation are Ra, the 
smaller, and Rd the, larger. From their values A,ka 
and kd are assessed. 

Rd = exp( -kd.T&) 

Qi = Crn/Ci, Qa = G/Ci 
c m  = A.(Rda-Raa) 

ka = -(2/Tm).ln(Ra) kd = -(2/Tm).ln(Rd) 
A = Cm/(Rda - Ra2) 

The scheme broke down in cases where there were 
no real roots and this occurred when the estimated 
value of Cm was greater than can be expressed by 
equation (2) as was found with some scattered data. 
In such cases Tm was reassessed taking more points 
into the second degree polynomial and, if failure 

persisted, the calculation went straight to a four 
parameter least squares fitting with approximate 
values for the four parameters of equation (3) 

ka = 2/Tm, kd = ka/2, A = 3.Cm H = 0 

when ka/kd was greater than 10, the three parameter 
values of ka were good estimates which were not 
much altered in subsequent calculations. 

Four ordinate calculation 
In all cases where real roots to equation (4) were 
obtained, the calculation was continued using 
equation (3) and bringing in a fourth ordinate, C,, 
at T = 2.Tm. By a scheme modified from the 3 
ordinate calculation, a value of H and consequently 
modified values of ka,kd and A were assessed giving 
a fit to the four ordinates. It was found best for this 
calculation to start with a moderately high value of 
H (0.3). 

The scheme used was as follows. Starting with the 
3 ordinate values of ka, kd and A with the above 
value for H. 

G,  = cl - Aa.H.(l - Rd) = A,.(& - Ra) from 
equation (3) 

Ga = Cz - A,.H.(l - RdS) = Aa.(RdS - Raa) 
Qi = Gm/Gi Qa = W G i  

Q1 and Qa then gave the same quadratic equation 
(4) as in the 3 ordinate method. Having reassessed 
Rd, Ra and A, with H = 0.3, the value of H was 
recalculated from equation (3) at T = 2.Tm 

C, = A.(H + (1 - H).Rd4 - Ra3 

C, was interpolated from the input data in the same 
way as C, and G. The whole set of calculations was 
repeated to a convergence of 0.001 in ka. 

Least squares calculation 
The values so obtained were mostly a good repra 
sentation of input absorption constants in generated 
data, however, when ka and kd were close, they were 
improved by a final non-linear least squares calcula- 
tion with equation (3) taking the values from the 4 
ordinate calculation as the starting values. The 
method of Gennrich 8t Sampson (1968) developed 
into the Biomedical Program BMD X85, was used. 
The least squares fitting was carried out with the 
original C.T data up to the point beyond T = 2.Tm 
to give positive values of the four parameters. All the 
sets of data and the very small sums of squares, 



A four parameter model for oral drug absorption 575 

indicated that equation (3) does give an excellent 
representation with respect to absorption, of data 
generated by equation (1). 

In cases where there was greatest difficulty in 
fitting equation (3) the non-exponential parameter 
Az differed significantly from the input value of 
(A + B). 

Generated data 
C,T data was generated from the two disposition 
compartment model by giving a range of values to 
the rate contants ka, kl, k,, ke. The parameters of 
equation (1) are then given by:- 

All the sets of data were normalized so as to give a 
total area under the C, T curve of 100 units and 
about 14 points were estimated in the period up to 

The parameters A and B of equation (1) may be 
expressed in terms of dose absorbed Xo, volume of 
distribution V and the rate constants. X,JV may be 
replaced by (ke.1) where I is the total area under the 
C/T curve giving- 

2.Tm. 

A = &.[(A + B).(ka - m/ka - p.Il/(~r - 
Noise wzs applied by using a subrcutine which 

generated random normal deviates. A coefficient of 
variation for the values of C was supplied as input 
together with the set of values of C and T. Sets of 
data were then generated containing random nois5 
applied to C. Each set was analysed by the method 
described in the previous section and then means and 
standard deviations of the parameters for all the sets 
were estimated. 

A vailabiiity 
The availability of a drug following cral dos;g- is 
assessed by 

Xo = t h e  amount of drug absorbed, V is the 
apparent volume of distribution, ke is the elimination 
rate constant and I is the total area under the curve 
C,T. There is ambiguity about V and without some 
further information Xo can only be expressed 
in terms of V. The corresponding expression 
from equation (3) is obtained by differentiating 
this equation and then substituting the value of 
exp(-kd. T) from equation (3). 

Xo/V = ke.1 

d_c = Ap(ka - kd). exp(-ka.T) -kd.(C - H.4) 
dT 

The first term in this rate equation represents 
absorption while the second equation represents dis- 
position. From this second term it is seen that the 
parameter H introduces a zero order component 
into the rate equation. The disposition rate is:- 

' 
v' dT 

= kd. (C - H.A2) 

Xe is the amount disposed at time T and V is the 
apparent volume of distribution. 

The amount disposed up to T = 2.Tm is 

D2 = V.kd. (C - H.A,).dT 

1 = V.kd. [r C.dT - 2.H.Az.Tm 
0 

The integral is the area (Iz) under the C,T curve from 

If C, is the concentration in the plasma at  2.Tm, 
the amount in the volume, V, at this time is C,.V. 

The total amount absorbed at  time 2.Tm is 
then X, = V.(kd.(I, - 2.H.Az.Tm) + C3) 

The proportion of the dose remaining unabsorbed 
at  T = 2.Tm is e~p(-2.ka.Tm) and this is usually 
less than 5%. However, in order to give a good 
estimate of the availability of the drug, Xo up 
to long times, the above expression is divided by 
1 - exp( -2.ka.Tm) 
The final expression for availability then becomes 

T = 0 to T = 2.Tm. 

Xo - kd.(12 - 2.H.ApTm) + C3 - -  
V 1 - exp (- 2.ka.Tm) 

With the generated data, values of availabilities 
(the generated data was all normalized to I = 100) 
were all somewhat below the input values of 100.ke. 

RESULTS 
Table 1 shows the results of calculation with a set 
of generated data giving disposition constants a = 
0.228, p = 0.0219. The input absorption constant 
Ka was varied in steps of 0.4 from 0-4 to 2.8. All 
the rate constants are in h-l; times in h. 

In all cases except when Ka = 0.4, the estimated 
absorption constant ka from the 3 parameter model 
was within 10% of the input value. The 4 para- 
meter model improved the value of ka and the fit 
to the data and the least squares calculation reduced 
the sum of squared deviations between input and 
calculated results to a very small value and at  the 
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Table 2. Generated data with fixed k,. Ka = 0.4. 

kl 
0.1 
0.15 
0.1 
0.15 
0.1 
0.01 
0.02 
0.04 
0-06 
0.09 

Input 

ks 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0 1  
0.1 

ke 
0.05 
0.05 
0 1  
0.1 
015 
0.1 
0- 1 
0.1 
0.1 
0.1 

Estimated from least squares with equation (3) 

ks 
0.418 
0.425 
0.424 
0.437 
0.429 
0.400 
0.400 
0.404 
0.409 
0.419 

kd A2 H L ke.1 
0.183 7.50 0.173 4.21 5 
0.236 9.09 0.135 4.02 5 
0-212 17-3 0088 8.66 10 
0.259 20.2 0.078 8.20 10 
0.248 31.0 0.048 13.1 15 
0.205 20.2 0.012 9.85 10 
0.208 2 0  3 0.022 9-59 10 
0.214 20.1 0.040 9.45 10 
0-216 19-5 0.057 9.18 10 
0.214 18.0 0.080 8.79 10 

same time improved the value of ka, so that in the 
worst case ka was estimated as 0.418 with an input 
value of 0.4. 

The worst agreement between input and output 
absorption constants was found at the lowest ka 
values with all sets of data. In Table 2, the sets of 
values with the same input Ka of 0-4 and varying 2 
compartment rate constants are shown. The values 
of the 4 parameters ka, kd, A, and H are those from 
the final least squares calculation. The largest 
difference between input and output absorption 
constants is seen in the fourth row where ka = 
0.437. In this case a = 0.32, = 0.031. The value 
of u is close to Ka. 

Table 3 indicates the time range of validity for 
the interpolation of concentrations generated from 
equation (l), by equation (3). With three sets of 
data it is seen that the first divergence in the second 
place of decimals occurs at around 3.Tm, with a 
10% divergence between 5.Tm in set 1 and 10.Tm 
in set 2. At late times in all cases the values from 
equation (3) approach limiting values and are 
therefore greater than the C, values. 

In Table 4 results are shown in which 10 sets of 
random noise simulating an experimental error of 
3 % in the concentration determination were applied 
to two sets of generated data. The calculations were 
successfully completed for all the sets of noise, 
giving a mean with the first set for ka equal to 0.41 1 
with a standard deviation of 0.071, that is a co- 
efficient of variation of 17 %. The other parameters 
showed large variations and in some cases the value 
of H reached the minimum of zero indicating that 
the scattered data could only yield three significant 
positive parameters. 

The second set had a high input value of ka = 2-8. 
The mean with the noise sets was somewhat below 
this at 2.67 with a coefficient of variation of 14%. 
Some noise sets again gave zero H. 

In Table 5 the results calculated with experimental 
values of prednisolone plasma concentrations 
following oral dosage are shown. These experi- 
mental resultswere published by Leclerq &Copinschi 
(1974) and are particularly suitable for analysis by 
this method since they contain a considerable 
number of results in the time period up to 2.Tm. 

Table 3. Comparison of concentrations from equa- 
tions (l), C1, and from equation (3), over a wide time 
range. 
Set 1. C1 generated from I = 100, Ka = 0.4, k, = 

0.15, k, = 0.1, k, = 0.1. 
C3 calculated from computer output values 
of rate constants of equation (3) with C1 (up 
to 2.Tm) as the input ka = 0.429, kd = 0.248, 

Set 2. C, generated from I = 100, Ka = 2.8, ke = 
0-15, k, = 0.1, k, = 0.1, C3 calculated from 

A, = 31.0, H = 0.0483, T m  = 3.268. 

ka = 2.80, kd = 0.286, A, = 16.5, H = 
0.117, T m  = 0.956. 

Set 3. Cl from I = 100, Va = 0.8, ke = 0.25, 
kd = 0.1, k, = 0.1, C, from Ka = 0.807, 

1.856. 
kd = 0.366, A, = 440, H = 0.0347, Tm = 

Time is given as multiples of T,. 

Set 1 Set 2 Set 3 
Time C ,  C. C, C. C! c. 
0.25 
0.5 
0.75 
1.0 
1.5 
2.0 
2 5  
3.0 
3.5 
4.0 
5.0 
6.0 
8.0 

10.0 
12.0 

3.77 
5.81 
6.75 
7.00 
6.47 
5.46 
4.46 
3.62 
2.96 
2.46 
1.80 
1.40 
0.95 
0.67 
0.48 

3.77 
5.8 I 
6.75 
7.00 
6.47 
5.46 
4.46 
3.63 
3.00 
2.54 
1.98 
1.72 
1.54 
1.51 
1.50 

7.08 
10.30 
11.57 
11.87 
11.29 
10.27 
9.25 
8.33 
7.51 
6.79 
5.61 
4.70 
3.44 
2.66 
2.15 

7.08 
10.30 
11.57 
11.87 
11.29 
10.27 
9.25 
8.33 
7.52 
6.80 
5.64 
4.75 
3.56 
2.81 
2.48 

7.12 
10.98 
12.76 
13 25 
12.23 
10.27 
8.28 
6.57 
5.22 
4.18 
2.8 1 
2.03 
1.28 
0.93 
0.71 

7.1 2 
10.9s 
12.76 
13.25 
12.2 3 
10.27 
8.28 
6.58 
5.21 
4.23 
2.93 
2,24 
1.71 
1.57 
1.51 



A four parameter model for oral drug absorption 577 

Table 4. Analysis with 3% random noise. 
Group Al. Ka = 0.4. Final values from the 4 
parameter least squares calculation. 

Set 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Mean 
Std 

k a  

0.41 8 
0485 
0.474 
0-373 
0.287 . 

0.358 
0.496 
0.510 
0.365 
0.379 
0.378 

0.41 1 
0.Oil 

k d  H 

0.182 
0-087 
0.089 
0-225 
0.193 
0.174 
0.082 
0083 
0.208 
0.210 
0.345 

0.171 
0.08 1 

7-48 
5.06 
5-28 

11.3 
17.9 
9.62 
4.93 
4.98 

9-99 
107 

44.1 

11.9 
11.3 

0.173 
0.03 
0 
0.128 
0.035 
0’086 
0.5 
0 
0.117 
0.133 
0.044 

0.068 
0.062 

L 

4.21 
4.16 
4-30 
4.48 
3.86 
4.97 
4.15 
4.15 
4.63 
4 47 
3 71 

4.28 
0-349 

Group Al. Ka = 2.8. 

Set ks k d  

1 2.80 0.213 
2 2.83 0.128 
3 275 0.140 
4 2.01 1-24 
5 3.07 0.115 
6 2-87 0-136 
7 2.68 0158 
8 2.00 1.18 
9 3.03 0-124 

10 2.47 0.899 
11 2.71 0.445 

A2 

5.29 
5.14 
5.21 

4.99 
5-21 
5.44 

5-05 
7.22 
5.63 

11.4 

11.5 

H 
0-281 
0 
0 
0.311 
0 
0 
0 
0.291 
0 
0454 
0.499 

L 
4.88 
4.82 
4.92 
4.35 
4.72 
4 9 5  
5-1 
4.67 
4.69 
4.62 
4.74 

Mean 2.665 0.435 6-55 0.166 4.77 
Std 0.361 0-450 0.250 0.202 0.198 

The plasma determinations were irregular for most 
of the individual results, the analysis was therefore 
carried out with the mean of the 10 sets of results 
reported in the paper. The 4 parameter calculation 
improved the fit compared with the 3 parameter 
calculation, but this was not much improved by the 
least squares calculation. In the 3 calculations ka 
moved from 0.88 to 1.22 and back to 0.99. When 
3 %  random noise was applied, a mean ka of 0.79 
with a coefficient of variation of 39% resulted, so 
that this set of data is somewhat unstable to noise. 
The best estimates of the absorption parameters 
are lag time = 0.19, absorption constant = 0.99, 
availability 191. 

A similar calculation was made with data pub- 
lished in the above paper for mean plasma con- 
centrations of prednisolone following dosage with 
enteric coated tablets. The effect of the enteric 
coating was apparent with a lag time of 0.87 h and 
a later time for the peak concentration (2.90 h). 
These resulfs did not give values with the 3 and 4 

Table 5. Mean prednisolone (20 mg tablets). 
C 15.0 70.0 116 129 148 162 160 155 150 146 143 n g d - 1  
T 0.25,’0.50,’0.75: 1.06, 1.24,1.56,1.73,2.Od,2.5d,3.d, 3.50 h 

Calc. Cm Tm ka kd A, H L D 

30 161 1.45 0.885 0.453 666 4.10-1 
40 1.22 0,478 3482 0.278 2.104 
LSQ 0.987 0.915 2645 0.045 191 1.5.10-1 

With 3 % random noise. 

A, H Cm Tm 
Mean 0,792 0.588 1762 0.072 158 1.69 
Std 0.311 0.221 1252 0.133 3.09 0.179 

k. kd 

ordinate calculations, the quadratic equation having 
no real roots. The least squares calculation starting 
with the approximate set of values for the 4 para- 
meters gave ka = 0.35 with zero H, availability = 
284. The results with 3 % noise were mean ka = 0.37, 
coefficient of variation 9 % indicating a reasonably 
stable calculation. 

A vailabilities 
The estimates of Xo/V are called L in the Tables. 
In Table 1 they are seen to be somewhat below the 
theoretical value for the input data of (ke.I) = 5.0, 
the smallest value being with the first set, L = 4.2. 
This is the set which gives the worst ka estimate. 

In Table 2, L is again below the input values of 
ke.I the worst value in percentage terms is 4-02 
with an input of 5.0. 

In Table 4 it is seen that L is relatively stable to 
random noise applied to C. 

From the prednisolone results the plain tablets 
gave an availability of 191 (ng ml-l) while the enteric 
coated tablets showed a higher value of 284 corre- 
sponding to the longer time period over which high 
plasma concentrations are sustained. 

These availability estimates are necessarily 
approximate but they should be helpful in assessing 
relative values for differing formulations. 

Design of experiments 
To apply the methods of calculation outlined in this 
paper it is important to design the experimental 
plasma concentration determinations so that they 
are spread as uniformly as possible over the time 
range 0 to 2.Tm. There should be about 5 deter- 
minations between 0 and T m  and a further 5 from 
Tm to 2.Tm. One or two results should be deter- 
mined at times shortly after 2.Tm. 
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3.5- 

J. Garnham and K. Raymond have made avail- 
able to us some sets of plasma concentration-time 
data for the absorption of a non-acidic anti- 
inflammatory substance in man after dosage with 
500 mg tablets. The measurements were not designed 
for this method of interpretation; one set of results 
which came nearest to the design outlined above 
had 7 results in the period up to T = Tm, 2 results 
between Tm and 2.Tm and one result after 2.Tm. 
These results are given in detail in Table 6. TI was 
0.083 h and Tm was 7.15 h. The 3 ordinate calcula- 
tion gave a value of ka of 0.26 h-* which was 
modified by the introduction of H to 0.245. The 
least squares method gave further modification of 
ke to 0.180. The value of the sum of squared devi- 
ations of calculated from experimental concentra- 
tions was not reduced to a very small value owing 
to the irregularity in the late time results, a situation 
which is always liable to occur with experimental 
data. 

,,.... """"' ....,,,, 

'.... " ..._. .... ..., 

.. . 
i 

; :. 

Table 6. Absorption parameters for the anti-inflam- 
matory agent. 

4 

T 0.5 1.0 1.5 2-0 3 0 4.0 6.0 8.0 12.0 240  h 
C 0.5 1.0 1.7 2.7 4.5 6 6  6.9 6.4 6.5 3 ' 0 ~  ml-I 

ka k d  Az H L 

0.256 0.063 14.59 
0-245 0.083 16.55 0.0910 

34 
49 
LSQ 0.180 0.127 38.92 0.0496 13.1 
94LSQ 0190 0-114 30.75 0.0596 124 

On plotting the theoretical functions for the 
4-ordinate and least squares calculations for this set 
of results, as shown in Figs 2 and 3, it was apparent 
that the least squares method gave a much inferior 
visual fit to the results than the former. This effect 
was caused by the slight concavity of the early 
results which meant that in unweighted least squares 

I =  
I. 

0' 12 2 4  
Time (h) 

FIG. 2. Data in Table 5 for an anti-inflammatory agent 
with curve representing equation (3) using parameters 
from 49 calculation. C in p ml-l T in hours. 

.... 
0 

12 24  
0 

Time (h) 

FIG. 3. Same data as Fig. 2 curve from LSQ calculation. 

terms it was expensive for the function to miss these 
points too widely, causing a poor representation of 
the important points around the maximum. 

As a consequence of these results, a further option 
has been introduced into the programme for use 
with experimental results which do not fit the 
experimental design. In this option nine values of C 
are interpolated from the set of experimental results 
with values of T at invervals of Tm/4 from Tm/4 to 
9Tm/4. The least squares calculation is then per- 
formed on these nine results so ensuring a uniform 
weighting over the time interval. 

This 9-ordinate method made little difference to 
the calculations for the prednisolone example where 
the points used were well spread across the interval, 
however, it gave a much better visual fit to the 
results for the anti-inflammatory agent, as is shown 
in Fig. 4. The estimated parameters by the different 
methods are given in Table 6. 

It is difficult to gauge the taking of plasma samples 
to fit an exact experimental design, particularly as 
Tm is likely to vary between subjects. The 9 ordinate 
interpolation option can be used to give a balanced 
least squares calculation over the significant time 
period. 
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In their unpublished work, Garnham & Raymond 
made studies at three dose levels, 500, lo00 and 
1500 mg. It was of interest to see how the availability 
estimate L varied with the dose. Individual subject 
results which were interpretable by equations (2) 
and (3), showed considerable variation in L. At the 
500 mg dose, the results were 5.2, 12.4, 20.2, 17.5, 
for 4 subjects; at the 1000 mg dose, 22-6, 17-9, 18.9, 
36.5 and at the 1500 mg dose, 24-0, 41-2, 43.7. The 
means of these results do reveal a significant corre- 
lationwithdose;500mgdose,meanL = 13.8; 1OOOmg 
dose, mean L = 24.0; 1500 mg dose, mean L =36.3 
pg ml-l. 

Absorption parameters and statistical considerations 
The quantities related to drug absorption which 

result from these calculations are lag time, absorption 
rate constant and availability. They should provide 
information for comparing formulations in groups 
of subjects. 

The noise method may be used to assess the 
stability of the calculated parameters. For this 
purpose a coefficient of variation for the analytical 
method used should be found by repeated deter- 
minations on appropriate plasma samples. 

In favourable cases where the coefficients of 
variation of the parameters are reasonably small, it 
should be possible to assess whether a significant 
difference between formulations has been established. 
The noise method may indicate that the estimates 
of absorption parameters have large coefficients of 
variation which render their quantitative significance 
small. 
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